ABSTRACT: Surface clay Soil (0-30) was collected from EL Hamoul Kafr El-Sheikh Governorate Next to Kitchener Drainage. the soil sample was air-dried, Soil properties pH, EC, clay content. Five hundred grams of air-dried soil samples were weighted in plastic columns. Three rats of compost (0, 2,4%) and three rats rock phosphate (0,1,3%) were added. The soil samples were taken at different incubation period (0, 3, 6) months. Soil pH, EC, and organic matter (SOM) were measured. Hedley sequential fractionation scheme was used to study P fractions. The P fractions were: (1)P-NaHCO₃ (2) P-NaOH (3) P-HCl/H₂SO₄ (4) P-residual and (5) Total P. Results revealed that a slight and insignificant decrease in pH values with increasing phosphate rock added, clearly decrease in values of soil pH by increasing the amount of compost added (%).There was a rise in values of soil EC by increasing the amount of compost (%) and the increasing in incubation time led to decreased in the soil EC values. The SOM values, were slight and insignificant increase when RP was increased from 0 to 1 % but when PR was increased to 3 % there was a significant increase in SOM values.

The increasing addition of compost led to increased P-NaHCO₃ fraction comparing with control treatment, while the addition of rock phosphate led to a decrease in this fraction and gave the lowest value. The addition of compost and rock phosphate together increased P-NaHCO₃ fraction more than compost alone or phosphate rock alone. Obtained results revealed that the increase in the incubation period led to an unnoticeable and insignificant decrease in this fraction of phosphorous. The results revealed that P-NaOH fraction represents 2.8 % of the total phosphorous. The results indicated that P-HCl/H₂SO₄ fraction increased as the incubation periods, phosphate rock and compost were increased. The obtained results showed residual P fraction was decreased with increasing incubation period.

Key words: Phosphorus fractions, compost, incubation periods.
عنوان الرسالة: تحرر الفوسفور في الأراضي المروية بعيا الصرف تحت تأثير محسنات مختمفة

اسم الباحث: نهى عبد الوهاب محمد السيسى

الدرجة العلمية: الماجستير في العلوم الزراعية (أراضى)

القسم العملي: علوم الأراضى

تاريخ موافقة مجلس الكلية: 2023/08/10

لجنة الإشراف:
- أ.د. صلاح عبد المجيد رضوان أستاذ كيمياء الأراضى – كمية الزراعة – جامعة المنوفية
- أ.د. محمد محمد حمادة شمبى أستاذ تغذية النبات – كمية الزراعة – جامعة المنوفية
- د./ وائل محمد عبد الحمن ندا استاذ مساعد الأراضى – كمية الزراعة – جامعة المنوفية

المملوكت العربى

أخذت من عينات تربة طينية (2-0 سم) من مركز الحامول محافظة كفر الشيخ بجوار. تم تجفيف عينات التربة الهوائياً، قدرت بعض خصائص التربة: الرقم الهيدروجيني، EC؛ نسبة الطين. وزنت 022 جرام من عينات التربة في أسطوانات بلاستيكية. أضيفت ثلاث معدلات من كلاً من الكمبست وصخر الفوسفات. أخذت عينات من التربة بعد ثلاث فترات تحضين مختمفة وتم قياس درجة حموضة التربة، EC، والمادة العضوية (SOM). استخدمت طريقة Hedley لتجزئة صور الفوسفور P: (1) P-NaHCO3 (2) P-NaOH (3) P– HCl / H2SO4 (4) P residuals لتجزئة صور الفوسفور Total P. أظهرت النتائج انخفاضاً طفيفاً وغير ذي أهمية في قيم الأس الهيدروجيني مع زيادة صخور الفوسفات المضافة، انخفاض واضح في قيم الرقم الهيدروجيني للترية عن طريق زيادة كمية الكمبست المضافة (%). زياده كمية الكمبست (%). في فترة التحضين أدت إلى انخفاض قيم EC في التربة. زادت قيم المادة العضوية زياده طفيفة وغير مهمة عندما تم زيادة صخور الفوسفات من 0 إلى 1 % ولكن عندما تم زيادة إلى 3 % كانت هناك زيادة كبيرة في قيم المادة العضوية. أدت الإضافة المتزايدة لل kemopst إلى زيادة الصورة P-NaHCO3 مقارنة بالكمبست. في حين أدت إضافة صخور الفوسفات إلى انخفاض في هذه الصورة وأعطت أدنى قيمة. أدت إضافة الكمبست والفوسفات الصخري معا إلى زيادة جزء P-NaHCO3. في فترة التحضين أدت إلى انخفاض غير معنى وغير ملمحا في هذا الجزء من الفوسفور. أوضحت النتائج أن زيادة جزء P–HCl / H2SO4 % من الفوسفور الكلى. أظهرت النتائج زيادة نسبة الصورة P-NaOH مع زيادة فترات التحضين. أظهرت النتائج انخفاض نسبة الفوسفور المتبقى مع زيادة فترة التحضين.